Hand Washing—A Critical Aspect of Personal Hygiene in Pharma

Scott Sutton

“Microbiology Topics” discusses various topics in microbiology of practical use in validation and compliance. We intend this column to be a useful resource for daily work applications.

Reader comments, questions, and suggestions are needed to help us fulfill our objective for this column. Case studies from readers are most welcome. Please send your comments and suggestions to column coordinator Scott Sutton at scott.sutton@microbiol.org or journal coordinating editor Susan Haigney at shaigney@advanstar.com.

KEY POINTS
The following key points are addressed in this article:

• Good personal hygiene is a requirement of all pharmaceutical activities, from operating on the line through validations. However, studies show poor compliance as a rule to basic hand washing technique.

• Poor hand washing technique may result in increased absenteeism, particularly in time of a potential H1N1 pandemic.

• Limited availability to adequate facilities may lead to poor compliance or poor efficacy of washing if performed. These facilities include appropriately constructed and sourced water supply, soap supply, and perhaps most importantly, adequate provisions for thorough drying of hands.

• While “antibacterial” label claims do no harm, they should not be relied upon to protect against poor practice.

• Jewelry can interfere with adequate cleansing and should be removed before washing. Jewelry should be discouraged in areas where hand cleanliness is important.

• Training for compliance in hand washing is difficult. There have been numerous reports of the difficulty in training and the subsequent monitoring of healthcare workers for compliance with hand washing requirements. Suggestions for training and a potentially useful monitoring tool are provided.

• Many studies use extended periods of time during the wash (1.5 to 2 minutes in some). This is not a practical regimen. A hand washing regimen is suggested for pharmaceutical manufacturing workers based on the Centers for Disease Control (CDC) hand washing protocol.

• Validation personnel should carefully evaluate personnel practices when microbial testing is required in validation protocols. It is likely that simple processes, such as hand washing, are generally assumed to be under control when they may be an undetected source of product contamination.

INTRODUCTION
When devising validation protocols, whether they are process simulation media fills, environmental monitoring qualifications, sanitizer qualification programs, or personnel qualification programs, we tend to take the basic requirements for granted. Hand washing is an activity that is undoubtedly taken for granted. While the first two activities mentioned above are more a concern for the aseptic manufacturer, the remaining environment and personnel qualification studies are a current good manu-

ABOUT THE AUTHOR
Scott Sutton, Ph.D., is a consultant with Vectech Pharmaceutical Consultants and operates The Microbiology Network (www.microbiol.org), which provides services to microbiology-related user’s groups. Dr. Sutton can be reached at scott.sutton@microbiol.org.
FACILITIES

We return to the CGMP (1) for the following basic requirements:

"21.52 Washing and Toilet Facilities. Adequate washing facilities shall be provided, including hot and cold water, soap or detergent, air driers or single-service towels, and clean toilet facilities easily accessible to working areas."

Water

Some aspects of the availability of soap and water (in terms of sinks) are self-evident. First of all, there should be soap and water available to those entering and leaving the lab or manufacturing area. The water should be of sufficient quality (at least potable). The mechanism to operate the water flow should not encourage the recontamination of the hands immediately after washing. This is commonly accomplished through the use of elbow levers or foot switches to turn the water on and off. The importance of this consideration was emphasized in the study of Griffith et al. (5), who showed a positive correlation between surface filth and recontamination of hands—the faucets were the most consistently contaminated feature of the immediate environment.

Current best practice recommends sinks be conveniently located near entrance and exit points, with suitable control mechanisms, and the availability of soap.

Soap

The type of soap, and in particular the design of the soap dispenser, is another important aspect of the efficacy of hand washing. We have three major choices: Bar soap, refillable liquid soap, and sealed liquid soap (for the moment we will set aside the whole question of antibacterial soaps and address it later). Bar soap is not suitable as it is a proven reservoir for bacteria (6). This leaves us with liquid soap.

Liquid soap dispensers come in two general designs. In the first, liquid soap can be added to a reservoir when required. Best practice is to completely clean out this reservoir before filling it again to prevent bacterial buildup—Bacteria can live in soap (7, 8). It is not recommended to merely "top-off" the soap to refill the reservoir. So, in choosing between removing the residual soap and thoroughly washing out the reservoir before refilling, and the other choice of lifting the lid and topping it off, which is the more likely practice? This does not even consider the nozzle that gets touched by the user's hand as soap is dispensed (to prevent that last drop from falling onto the counter). In addition, this faucet is very likely to have dried soap caked to its exterior.
Microbiology Topics.

The other variety of public area liquid soap dispenser has a sealed bag with an integral nozzle. Regardless of the formulation contained within the bag, this system enables a clean startup with each refill of the soap container. I would urge the use of the sealed bag system in the lab and manufacturing area. There is no sense in risking the contamination of your hands by the soap if this risk can be minimized.

Antibacterial Additives

The concept of antibacterial additives to soap sounds good. Take soap, arguably the most important medical advance in the last few hundred years, and make it better by adding a biocide to it. The problem with this scenario is that no one is actually required to show that the biocide works in the soap, only that it is present in the formulation. This is not to say that reputable manufacturers do not conduct appropriate testing, only that the demonstration of antimicrobial efficacy is not required to put a label on your product that it is an "Antibacterial" soap. In addition, there is the possibility of selecting for biocide resistance in soaps that might be only marginally more efficacious than standard soap, if more efficacious at all (9, 10). However, this can lead to better soaps if formulated well. For example, Fuls et al. (11) found that with a particular soap containing triclosan, the use of a greater volume of soap and longer wash time resulted in a marked superiority of the antibacterial soap over the traditional.

The biocides most commonly used as soap additives include triclosan, chlorhexidine, EDTA, and alcohols. Triclosan has come under intense scrutiny for potential selection of antibiotic-resistant mutant microorganisms, particularly in Europe. This prompted the European Commission (EC) to formally examine the safety of triclosan, and the Scientific Steering Committee of the European Commission adopted an official opinion in 2002 that triclosan, used in biocidal concentrations, is safe and effective (12). Chlorhexidine still has a place in the surgical scrub arena, but is not a major component in consumer products.

To sum up, biocides added to soap make an antibacterial soap. However, this is not a guarantee that the resultant antibacterial soaps are, in fact, antibacterial. There have even been reports of the antibacterial soap suffering contamination (13, 14).

HAND JEWELRY

Hand jewelry (e.g., rings, bracelets, watches, etc.) should be removed when washing hands. These items of jewelry make it very difficult to clean your hands effectively. Alp et al. (15) examined the hand washing practices of laboratory workers, figuring that regular exposure to pathogenic organisms would make them aware of the dangers. Compliance was 100% for the act itself after training, but 36.7% wore a ring, 46.9% a watch, and 6.1% bracelet—all of which harbored pathogenic organisms after hand washing. This was corrected by repeated interventions. Fagernes et al. (16), in a study of healthcare workers, examined the impact of wearing a single plain ring (rather like the wedding ring many of us are no longer able to remove). The good news is that the total bioburden after washing was not different between ring wearing and no ring subjects, although the study showed a clear increase in Enterobacteriaceae contamination when compared to the subjects without rings.

Drying

Several teams have looked at paper towels vs. hot air dryer in regards to cleaning and transmission of contamination. Matthews and Newsom (17) compared hot air driers and paper towels for the potential to spread airborne microorganisms during the drying process. Their design focused on air sampling using casella slit-to-agar sampler for airborne bacteria during drying (in the somewhat controlled environment of a biological safety cabinet). They found minor differences in airborne viable counts in a comparison between one model of dryer and paper towels, significantly less airborne viable counts for two other models in comparison to paper towels. Blackmore expanded this comparison, conducting a study (18) on the effect of drying by air blower, by paper towel, and finally by cloth towel on a continuous roller. The fingertips of the left hand were sampled by touching to nutrient agar and then the hands were washed. After washing, the hands were dried by one of the three methods and sampled again. The expelled air from the air driers was sampled by blowing it onto "nutrient agar" from 6 inches for a controlled period of time (differing by cycle time of the model of air dryer). The paper and cloth towels were sampled by touch plates. Blackmore reports that the air blowers tested (in public locations) harbored bacteria and could serve as a source for recontamination of hands after washing. The situation with continuous cloth drying was not encouraging either. The cloth roller towels were very good when new but over the course of three months (the length of time studied) they became contaminated. In addition, she found (in 1989) that these continuous cloth towels are laundered and re-used. The laundered material was contaminated as well (range of 10-60 CFU/touch plate) as installed in the roller dispenser. One explanation for the apparent contradiction in the results is offered by...
Meers and Long (19) who did a limited study to evaluate the purchase of hot-air dryers for their hospital and sampled the air before, during, and after drying, finding an increase in counts only after drying. They concluded that it was difficult for small particles to escape from skin while moist (covered with water). What was important that the skin be thoroughly dried.

Harrison et al. (20) took a closer look at transmission of bacteria between hands and paper towels. They looked at both directions of transmission, reasoning that the concern over a contaminated towel transmitting to the hand is clear, but there is also a possibility for a contaminated hand to transfer bacteria to the dispenser while freeing jammed towels. Using a wall-mounted paper towel dispenser and a range of paper towels, volunteers (with either clean or contaminated hands) were asked to clear jammed towels from the dispenser (the dispenser either clean or contaminated). They found that while the contaminated hands only marginally contaminated the dispenser (0.01%-0.64%) the dispenser was fairly effective at contaminating hands (12.4-13.1%).

In looking at the potential for dirty hands to contaminate surfaces we should also consider dryness. Patrick et al. (21) in studying this issue concluded that, “...bacterial numbers translocating on touch contact decreased progressively as drying with an air or cloth towel system removed residual moisture from the hands... Careful hand drying is a critical factor determining the level of touch-contact-associated bacterial transfer after hand washing and its recognition could make a significant contribution towards improving handcare practices in clinical and public health sectors.”

Reinforcing this consideration is the recent study of Yamamoto et al. (22) who looked at drying by paper towel, by hot air, and by hot air supplemented with UV light. In addition, the hot air drying was performed either by holding the hands stationary or by rubbing the hands together. After looking at all variables they concluded that the hot air dryer is effective if the hands were held motionless (i.e., not rubbed) until dry. The UV light also seemed to help in decreasing residual viable cells for the hot air dryer. Paper towels were shown to be more effective when measured by fingertip sampling, but equivalent by other measures.

TRAINING AND MONITORING
All budgetary resources spent on a personnel hygiene program will be ineffective if training and management attention is incomplete or indifferent. Compliance is universally the major problem in hand-washing programs (23). The first problem to address is to determine a suitable procedure for hand washing. Several are available; although, none are specifically directed to the pharmaceutical worker. A potentially useful method is presented in the next section.

Training becomes the next issue. Training by rote is always an option, but this is not a particularly effective one as “everyone knows” how to wash their hands and any changes made solely to meet standard operating procedure (SOP) requirements will be transitory at best. There are several tools available for assistance in training, particularly in the evaluation of cleaning efficacy. A common method is to use a fluorescent gel as a marker. After washing, the hands are held under UV light to determine efficacy of cleaning. One such activity is available on the Internet at http://www.bam.gov/teachers/activities/epi_4_hand_wash.pdf (downloaded 9/27/09). This activity guide is useful in supplying a teaching resource for hand washing that includes a lesson outline and three separate sources of the fluorescent gel to use as a marker.

The final issue is monitoring compliance. This is particularly difficult as self-assessment is notoriously inaccurate; at least among healthcare workers who consistently self-report more conscientious hygiene behavior than what is observed independently (24-27). On the other hand, Stevenson et al. (28) report a tool for self-reporting that is directed at the general population that might have use as a monitoring method, perhaps coupled with observation. Observation of behavior should be included in any evaluation however else compliance is measured in your facility.

A SUGGESTED HAND WASHING PROTOCOL
The following stepwise procedure is recommended for hand washing in the pharmaceutical environment. The following protocol is based on a Centers for Disease Control (CDC) hand washing protocol:

- Remove jewelry from hands and wrists
- Consider the sink, including the faucet controls, contaminated. Avoid touching the sink and faucet controls with your hands.
- Turn water on using elbow controls (or foot control). If these are not available, use a paper towel and then wet your hands and wrists.
- Apply soap from a dispenser (do not use bar soap which will certainly be microbially contaminated). Assume the control lever for the soap is contaminated. Work soap into a lather.
- Vigorously rub together all surfaces of the lathered hands for at least 20 seconds. Friction helps remove dirt and microorganisms. Wash around cuticles,
in the finger webbing, the back of the hands end under fingernails in addition to rubbing the palms
together.
• Rinse hands thoroughly under a stream of water. Running water carries away dirt and debris. Point
fingers down so water and contamination won’t drip toward elbows.
• Dry hands completely (leave water running):
 • Use a clean dry paper towel. Be aware that if
 the towel jams and you need to work to release
 it you should re-wash your hands if you touch
 the dispenser.
 • Use a hot-air blower (preferably one that has an
 integral UV light). Start the unit with your elbow
 (not your wet hands). Do not rub your hands
 together while drying them completely under
 the hot air flow.
 • Use elbow or foot to turn faucet off. If appropriate
 faucet controls are not available, use a clean paper
 towel to turn off the faucet.
 • Do not top off the soap dispenser. This leads to con-
 tamination in addition to the contamination in the nozzle. If possible, use a soap dispenser
 that is refilled in a sealed container that includes the soap in a plastic bag and a fresh nozzle.
 • Do not assume antibacterial soaps are efficacious. Treat all soaps as potentially contaminated
 and exercise sanitary practices in regularly cleaning dispensers.

IMPLICATIONS FOR VALIDATION AND COMPLIANCE
Properly training personnel regarding routine cleanliness is an obvious need for all manufacturing and testing. This need is heightened in high-risk manufacturing such as in aseptic processing. This need is also heightened in situations wherein microbial testing is part of validation testing but is not usually conducted in routine manufac-
turing. For example, preparation of granulating liquids for solid products does not usually include microbial testing. Preparation of aqueous coating liquids does not usually include microbial testing. Clean equipment stor-
age does not usually include microbial testing. All of these examples would likely include microbial testing for process validation or cleaning validation. The two aforementioned formulation examples likely do not contain preservatives in their respective formulations. Depending on the formulation, microbial growth could be easily supported in these situations. Clean equipment hold time validation should include microbial testing. Drug dispensing practices may not routinely include micro-

brial testing even though liquid materials that support microbial growth may be routinely dispensed for use in manufacturing commercial product. Validation personnel should carefully evaluate personnel practices when microbial testing is required in validation protocols. It is likely that simple processes, such as hand washing, are generally assumed to be under control when they may be an undetected source of product contamination.

SUMMARY
Hand washing is an activity that is frequently taken for
granted. Every pharmaceutical process that includes some aspect of human intervention is subject to con-
tamination, and the integrity of well-designed and con-
trolled pharmaceutical processes may be compromised by careless hand washing. Employee awareness of this potential, coupled with effective training, will minimize inadvertent contamination due to careless hand-washing techniques.

There are several key points to ensure effective hand-
washing. It is important to use proper technique in stor-
ing the soap in a clean manner (to prevent excessive contamination), remove all jewelry, to use enough soap
to do the job, wash thoroughly (time and application), and to completely dry your hands while preventing recontamination.

As for drying method, there does not seem to be strong, unambiguous data showing superiority for either paper towel drying or hot air drying (although UV irradiation when used with hot air seems preferable).

Technique and procedure are paramount in minimiz-
ing transmission. Once trained, ongoing compliance with the hand-washing procedure should be monitored as part of an ongoing contamination control program for the facility, and an aid to minimize employee absence due to illness.

REFERENCES
1. FDA, Title 21—Food And Drugs, Chapter I—Food And
 Drug Administration, Department Of Health And Human
 Services, Subchapter C—Drugs: General, Part 211, Current
 Good Manufacturing Practice For Finished Phar-maceuti-
 cals.
2. Galilaher, W.R., "Towards a Sane and Rational Approach to
 Management of Influenza H1N1 2009," Virology 6:51-57,
 2009.
 June:104 – 107, 2008.
4. Grayson, M., et al., "Efficacy of Soap and Water and Alco-
 hol-Based Hand-Rub Preparations Against Live H1N1
 Influenza Virus on the Hands of Human Volunteers," Clin

